Detail--The same tiny cellulose crystals that give trees and plants their high strength, light weight and resilience, have now been shown to have the stiffness of steel. The nanocrystals might be used to create a new class of biomaterials with wide-ranging applications, such as strengthening construction materials and automotive components.
Calculations using precise models based on the atomic structure of cellulose show the crystals have a stiffness of 206 gigapascals, which is comparable to steel, said Pablo D. Zavattieri , a Purdue University assistant professor of engineering.
"This is a material that is showing really amazing properties," he said. "It is abundant, renewable and produced as waste in the paper industry."
Findings are detailed in a research paper featured on the cover of the December issue of the journal Cellulose. "It is very difficult to measure the properties of these crystals experimentally because they are really tiny," Zavattieri said. "For the first time, we predicted their properties using quantum mechanics." The nanocrystals are about 3 nanometers wide by 500 nanometers long - or about 1/1,000th the width of a grain of sand - making them too small to study with light microscopes and difficult to measure with laboratory instruments.
The paper was authored by Purdue doctoral student Fernando L. Dri; Louis G. Hector Jr., a researcher from the Chemical Sciences and Materials Systems Laboratory at General Motors Research and Development Center; Robert J. Moon, a researcher from the U.S. Forest Service's Forest Products Laboratory ; and Zavattieri. The findings represent a milestone in understanding the fundamental mechanical behavior of the cellulose nanocrystals. "It is also the first step towards a multiscale modeling approach to understand and predict the behavior of individual crystals, the interaction between them, and their interaction with other materials," Zavattieri said. "This is important for the design of novel cellulose-based materials as other research groups are considering them for a huge variety of applications, ranging from electronics and medical devices to structural components for the automotive, civil and aerospace industries."
Calculations using precise models based on the atomic structure of cellulose show the crystals have a stiffness of 206 gigapascals, which is comparable to steel, said Pablo D. Zavattieri , a Purdue University assistant professor of engineering.
"This is a material that is showing really amazing properties," he said. "It is abundant, renewable and produced as waste in the paper industry."
Findings are detailed in a research paper featured on the cover of the December issue of the journal Cellulose. "It is very difficult to measure the properties of these crystals experimentally because they are really tiny," Zavattieri said. "For the first time, we predicted their properties using quantum mechanics." The nanocrystals are about 3 nanometers wide by 500 nanometers long - or about 1/1,000th the width of a grain of sand - making them too small to study with light microscopes and difficult to measure with laboratory instruments.
The paper was authored by Purdue doctoral student Fernando L. Dri; Louis G. Hector Jr., a researcher from the Chemical Sciences and Materials Systems Laboratory at General Motors Research and Development Center; Robert J. Moon, a researcher from the U.S. Forest Service's Forest Products Laboratory ; and Zavattieri. The findings represent a milestone in understanding the fundamental mechanical behavior of the cellulose nanocrystals. "It is also the first step towards a multiscale modeling approach to understand and predict the behavior of individual crystals, the interaction between them, and their interaction with other materials," Zavattieri said. "This is important for the design of novel cellulose-based materials as other research groups are considering them for a huge variety of applications, ranging from electronics and medical devices to structural components for the automotive, civil and aerospace industries."