Sunday, June 2, 2013

New Physics Complications Lend Support to Multiverse Hypothesis.

Decades of confounding experiments have physicists considering a startling possibility: The universe might not make sense.

On an overcast afternoon in late April, physics professors and students crowded into a wood-paneled lecture hall at Columbia University for a talk by Nima Arkani-Hamed, a high-profile theorist visiting from the Institute for Advanced Study in nearby Princeton, N.J. With his dark, shoulder-length hair shoved behind his ears, Arkani-Hamed laid out the dual, seemingly contradictory implications of recent experimental results at the Large Hadron Collider in Europe.

"The universe is inevitable," he declared. "The universe is impossible."

The spectacular discovery of the Higgs boson in July 2012 confirmed a nearly 50-year-old theory of how elementary particles acquire mass, which enables them to form big structures such as galaxies and humans. "The fact that it was seen more or less where we expected to find it is a triumph for experiment, it’s a triumph for theory, and it’s an indication that physics works," Arkani-Hamed told the crowd.

However, in order for the Higgs boson to make sense with the mass (or equivalent energy) it was determined to have, the LHC needed to find a swarm of other particles, too. None turned up.

With the discovery of only one particle, the LHC experiments deepened a profound problem in physics that had been brewing for decades. Modern equations seem to capture reality with breathtaking accuracy, correctly predicting the values of many constants of nature and the existence of particles like the Higgs. Yet a few constants — including the mass of the Higgs boson — are exponentially different from what these trusted laws indicate they should be, in ways that would rule out any chance of life, unless the universe is shaped by inexplicable fine-tunings and cancellations.