Imagine a suit that can charge your phone. No, it won’t have solar panels built into it. Instead, it will be made of 3D fibers with piezoelectric properties, thanks to research being done by Dr. Navneet Soin and his colleagues at the University of Bolton in the UK. Their latest paper in the journal Energy and Environmental Science describes a wearable energy harvesting technology made of piezoelectric fibers. Unlike other micro-sized piezoelectric devices, which are brittle, uncomfortable, and costly, Dr. Soin’s “3D spacer technology” makes fibers that are resilient, lightweight, and inexpensive.
Instead of being added to the material, the energy harvesters are woven directly into the fabric. According to Soin and his colleagues, the knitted piezoelectric generator consists of polyvinylidene fluoride (PVDF) monofilament spacers (the vertical objects in the above image) sandwiched between electrodes made of silver-coated polyamide multifilament yarn layers. The fabric is produced using warp knitting or welt knitting, both of which are standard textile industry techniques.
How powerful are they? With pressures of only 0.10 MPa (14.5 PSI) the material generates up to 5 microwatts per square centimeter. That’s enough to power small wearable sensors and low-power personal electronic devices.
Further work will optimize the energy production and ensure durability. The research team believes that this technology could be commercially available within five years. This could give new meaning to the term “power suit.”
Instead of being added to the material, the energy harvesters are woven directly into the fabric. According to Soin and his colleagues, the knitted piezoelectric generator consists of polyvinylidene fluoride (PVDF) monofilament spacers (the vertical objects in the above image) sandwiched between electrodes made of silver-coated polyamide multifilament yarn layers. The fabric is produced using warp knitting or welt knitting, both of which are standard textile industry techniques.
How powerful are they? With pressures of only 0.10 MPa (14.5 PSI) the material generates up to 5 microwatts per square centimeter. That’s enough to power small wearable sensors and low-power personal electronic devices.
Further work will optimize the energy production and ensure durability. The research team believes that this technology could be commercially available within five years. This could give new meaning to the term “power suit.”